or text +1 807-252-4391

Archive for category: Research


Hollow Cathode Plasma Sources Talk for Virtual ALD/ALE-2020

Meaglow’s Chief Scientist, Dr. K. Scott Butcher has provided an on-demand talk for this year’s virtual #ALDALE2020 event available on-line from the 29th of June 2020. The talk is entitled “Recent Advances in Hollow Cathode Technology for Plasma Assisted ALD” and will be talk AF2-MoA4 in the ALD Fundamentals section. The talk will provide basic information about hollow cathode plasma sources, for which there has been significant uptake in the ALD community. It will also talk about some new work with large area aluminum hollow cathode sources.

More information available at



Hollow Cathode Plasma Sources – a wider operating pressure range than you might think

We 20190422_143455want to correct some recent disinformation in a journal article, the review paper J. Vac. Sci. Technol. A 37 (2019) 030902, on plasma ALD, appears to have mistakenly reported a very narrow operating range for our hollow cathode plasma sources of only 0.3 to 2 Torr. It is unclear what this range was based on as none of the references cited actually provide a pressure range. Apparently it is a simple misconception of the authors, presumably due to their inexperience with hollow cathode plasma sources. However, all our designs have had larger pressure ranges than those given in the review, and in fact there have been some exciting recent advances in our designs that have extended operation down to tens of milliTorr and perhaps even lower.

For clarification, the operating pressure range of our earliest hollow cathode design is provided in Japanese Journal of Applied Physics 51 (2012) 01AF02. The optimum pressure for that cathode – used for CVD work – was 1 Torr, however measurements presented there clearly show an operating range of at least 0.23 to 6.6 Torr for that very early design, though in fact it was probably much broader.

When designing for ALD systems, lower optimum pressure ranges have been required, so from about 2014, our designs have been optimised for operation between 0.3 and 1 Torr, though the full operating range of our barrel design plasma sources – such as our series 50 source, commonly used as an ICP replacement – have  a lower  limit of approximately 100 mTorr and an upper limit of > 5 Torrs. The picture below shows one of these sources at 120 mTorr with nitrogen at 100 watts of RF power.

Our newer designs, based on our large area hollow cathode plasma sources, go to even lower pressures, which we’ve now run to the base pressure of our test systems, to as low as 35 mTorr. A measurement system upgrade will be required to see just how low these sources can go, an example at ~50 mTorr is shown top left.

Check out the Meaglow website at or contact us at or +1 807 252 4391, for more information on our plasma products.


120 mTorr nitrogen 100 watts 0.0005 sec exposure


New Hollow Cathode Plasma Source Designs Provide Better Quality Films

0.125 sec exposure 278 watt 4130 mTorr

The University of Connecticut group of Dr. Necmi Biyikli, with others, have recently published a paper (J. Vac. Sci. and Technol. A 37 (2019) 020927) where they were able to achieve good quality, highly stoichiometric AlN using hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) with film densities near bulk values. Because of the high radical flux from the source, significantly lower RF power was required to achieve this improvement in material quality compared to past experience, and shorter plasma on cycles could be used at these lower powers (20 seconds at 100 watts compared to 40 seconds at 300 watts).

Similar improvements in silicon nitride deposition were recently achieved by a team at the University of Texas, Dallas, where excellent quality, highly stoichiometric, high density PA-ALD grown material was achieved using one of our hollow cathode plasma sources (see, for instance, IEEE Electron Device Letters 39 (2018) 1195 ).


Meaglow’s hollow cathode plasma sources are widely used by the ALD Research Community as replacements for inductively coupled plasma (ICP) sources because there is less oxygen contamination when depositing non-oxide materials. However, these recent papers, by the University of Connecticut and the University of Texas, Dallas, illustrate advantages that may be far more important for the industry moving forward. Those being an extremely high radical flux, to the point where the ion signal (ion densities are similar to ICP sources) is swamped by the signal of radicals during optical emission spectroscopy measurements, and relatively low plasma damage (see our company white paper on hollow cathode sources). These result in quicker deposition times with potentially more stoichiometric, better quality material.

The image to right shows the University of Connecticut plasma source with ellipsometer ports and sample entry door. The 4″ diameter source was custom made for use with an Okyay Tech ALD system.



Ammonium Nitrate Sensor/ALD Paper From Oklahoma State University

IMG-3804Congratulations to Prof. Dave McIlroy’s group, at the Physics Department of Oklahoma State University, for their recent publication in ACS Sensors Vol. 3 (2018) pg. 2367. The paper, authored by Lyndon Bastatas, provides some of the first results from the Okyay Tech ALD system recently acquired by that group. The ALD system includes a 4″ diameter Meaglow hollow cathode plasma source that was used to pretreat silica nanowire mat samples prior to the thermal deposition of ZnO in the Okyay Tech system. The ALD steps were part of a process to make a collection of 1D structures for ammonium nitrate sensors.

The picture shows Aaron Austin, one of the Oklahoma team next to the Okyay Tech ALD system with Mealgow plasma source shown at the top. Apparently more papers are on the way, with another 2019 publication already available. Meaglow is pleased to be an enabler of this next generation of research, check our products at



Meaglow Profiled in Frost & Sullivan Research Firm’s Technical Insights


Meaglow’s Migration Enhanced Afterglow technique was compared to  Molecular Beam  Epitaxy (MBE) and Metalorganic Chemical Vapour Deposition (MOCVD)  processes. The F&S report summarizes that Meaglow is a new  disruptive thin film growth technique that overcomes these other  processes limitations with a bright future in Field Effect Transistors  (FET), LEDs, and Photovoltaics/Solar Cells. For the full technical  insights report, click here.


Meaglow Front Cover Feature of Compound Semiconductor Magazine

Today Meaglow was the feature story in or Magazine in an  article entitled Slashing Temperatures for Nitride Growth. The article discusses Meaglow Ltd. technology in comparison to MOCVD, the Meaglow  growth technique and applications to industry as well as a background on one of the founder, Dr. Scott Butcher.
Atomic Force Microscopy
left: Migration enhanced overflow can form Ga-face GaN films with a thickness of 200 nm at 630 ºC. Atomic force microscopy reveal that the root-mean-square surface roughness of this film is 0.23 nm. Molecular terraces can be distinguished in the image. Above right: Atomic force microscopy reveals that the InN surface has a root-mean-square roughness of 0.1 nm and features molecular terraces.
Click on article for more details.
Upgrade Your Plasma Source Today!